

OCTOBER 11-14, 2005 • WASHINGTON, D.C.

Sensor Webs

Maximizing Useful Science Return Using Dynamic Measurement Techniques and Adaptive Observing Strategies

Agenda

- Science Missions: Yesterday and Today
- Sensor Webs: Tomorrow
- NASA/Goddard Sensor Web R&D.
- Summary

"...researchers envision an intelligent and integrated observation network comprised of sensors deployed to vantage points from the Earth's surface to deep space. This **Sensor Web** will provide timely, on-demand data and analysis to users..." [page 6]

Science Instruments & Missions: Yesterday...

Missions & Sensors: Today (1)

Missions & Sensors: Today (2)

Operations Concept: Today

- Science measurements and mission ops concepts by single, independent science instruments and platforms
- Taking initial steps toward integrated measurement systems
- No real time information sharing or sensor data fusion between instruments, platforms, or systems

- With a few exceptions, reactive & selectable sensor measurement modes are lacking
- Lack of (near) real-time, interoperable planning and scheduling systems to facilitate opportunistic science and discovery
- Interspacecraft communications: a "bent pipe" service for command uplinks and science data downlinks

Future Vision

A Global Sensor Web Observing System

NASA

"The best way to be ready for the future is to invent it."

John Sculley – CEO, Apple Computer

A sensor web is a coherent set of distributed "nodes", interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system.

OCTOBER 11-14, 2005 • WASHINGTON, D.

Maximizing Useful Science Return

and Enabling New Applications

"Life was simple before World War II. After that, we had systems." Rear Admiral Grace Murray Hopper

RENCE

Volcanic Ash Plume

Autonomous Node Interactions

"Nothing endures but change. There is nothing permanent except change. All is flux, nothing stays still." Heraclitus

Responding to Change	
Node State	Action
Event detection	• Discriminate significant signals, features, patterns,
Event notification	• Publish (subscribe to) event detection messages for use by other nodes
Event processing	Exchange sensor data and other informationPerform multi-sensor data fusion
Node reaction	 Determine available resources by exchanging node state messages Modify science goals Plan & schedule new measurements

Responding to Change Initiate New Node State

Responding to Change	
New State	Examples
Spatial	• Deploy sensor to new location; change measurement resolution, FOV, viewing geometry,
Temporal	• Change sensor measurement frequency,
Spectral	Select phenomenon-unique sensor bands,
Data Assimilation & Modeling	• Generate new initial conditions; invoke nested-grid model; change model grid size or shape;
Organizational	• Modify sensor net topology; form new sensor clusters; modify command & control hierarchy,
Hardware & software	 Reconfigurable electronics; execute event specific algorithms

AGI

Swift: Gamma Ray Bursts OCTOBER 11-14: 2005 - WASHINGTON DO

Pg 10 of 20 www.agi.com

Sensor Web Observing Systems Representative Benefits

- Intelligent data collection
 - Maximize useful science return by improved utilization of instruments and platforms
- Event-driven observations
 - Task complementary instruments to measure rapidly evolving, transient, or variable events and phenomena

Model-driven observations

Use numerical models to initiate targeted sensor measurements to reduce forecast model uncertainty

EO-1 Targets Volcanoes

In Situ Networked Sensors Kilauea, Hawaii

☐ Targets uplinked to EO-1
on-board planning &
scheduling system (Casper)
☐ Use GOES cloud cover to
make final target selection

On-board thermal detection algorithms

- □ Re-image in < 8 hours□ Create browse images on-board
- □ D/L to Hawaii Volcano Observatory

Adaptive Sensor Fleet: Science Goal Driven Fleet for in situ Marine Measurements

AGI Pg 13 of 20 www.agi.com

"Event-driven" Sensor Web Simulation for Formation-flying Spacecraft

STK/AVO: Simulating Event-driven Targeted Cloud-free Measurements

Aqua/Aura Movie

Model-driven Sensor Web Simulation

OCTOBER 11-14, 2005 • WASHINGTON, DC

STK/AVO: Simulated Aura/TES targeting

drives STK targeting simulation

Meteorological Observing System Sensor Web Simulator

- Sensor webs would enable numerical forecast models to influence the observing system - potentially controlling error growth in the system
- ... BUT investing in the sensor web could be costly and would involve risk

Solution:

 Use Goddard Observing System Simulation Experiments (OSSEs) to construct real-world simulations of the atmosphere ("nature runs") that can then be sampled by a simulated observing system

USERS' CONFERENCE
OCTOBER 11-14, 2005 - WASHINGTON DC

Objectively evaluate alternative dynamic measurement techniques
 & adaptive observing strategies

Applying Sensor Webs to Similar Planetary Phenomena and Events (1)

Earth Dust Storm

Mars Dust Storm

Applying Sensor Webs to Similar Planetary Phenomena and Events (2)

Credit: NASA

Credit: NOAA

Credit: University of Arizona, Department of Planetary Sciences

Summary

- Earth & space science events and future exploration activities are intrinsically dynamic
- Future observing systems & sensors should facilitate
 - Dynamic, reactive measurement techniques
 - Collaborative, adaptive observing strategies
 - Horizontal information fusion

- Sensor Web-enabled science instruments and observing systems
 - Complement current mission ops concepts
 - Possess capability to react to unanticipated events, unchartered territory, and spontaneous needs
 - Benefits the Earth and spacesciences, and NASA's Vision for Space Exploration
- Simulation & visualization tools facilitate "What if?" analyses

